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A nonlinear theory is presented for the formation of hexagonal optical structures in a
photorefractive medium equipped with a feedback mirror. Oppositely directed beams in
photorefractive crystals are unstable against the excitation of sideband waves. It is shown here that
as this instability evolves to its nonlinear stage, the three-wave interaction between weak
sideband beams does not stabilize it, but rather leads to explosive growth of the amplitudes of
beams whose transverse wave vectors form angles that are multipig8.ofs a result,

sideband beams at these angles are found to be correlated. A range of parameters is found in which
four-wave interactions saturate the explosive instability, which explains the appearance of

stable hexagons in the experiment. Outside this region, nonlinearities of higher order saturate the
explosive instability, and the process of hexagon generation must be studied numerically.

Matrix elements are obtained for the three- and four-wave interactions as functions of the distance
to the feedback mirror, and an equation for the time evolution of the sideband wave

amplitudes is derived that describes the hexagon generation. A comparison is made with
experimental results for the photorefractive crystals KhNa@d BaTiQ. © 1998 American

Institute of Physicg.S1063-776(98)02903-3

1. INTRODUCTION rate equaled zero at the threshold of the instabilitythis
were not the case, moving optical structures would be seen.
Oppositely directed optical beams passing through nonExperimentally, such a motion can only be produced by mis-
linear media often exhibit transverse instability against thematching the directions of the oppositely directed beams
excitation of waves at small angles to the primary propagaslightly). In other words, the frequency detuning between
tion direction and the generation of transverse hexagonpump and sideband waves is assumed to be zero at the in-
shaped optical structurés® This instability is caused by stability threshold.
positive feedback between the counterpropagating beams, Above threshold, the instability leads to generation of
and is absolute in nature. In photorefractive crystals suchveak optical beams at small anglés: |k, |/k, to the pump
phenomena have been especially well-studi€djue to the  beams, wheré, is the wave vector of the pump beams and
extreme ease with which the evolution of the transverse intk | is the transverse component of the excitation beam wave
stability and formation of regular structures can be observedsector. For pumping slightly above threshold, the only
Characteristic times for the creation of these structures rangseams generated had wave vectors in a narrow layer around
from tenths to tens of seconds. Typical nonlinear lengthsk |=k,, , where the instability growth rate is a maximum
within these crystals, over which the amplitude of the light(herek,, is the value of the transverse wave vector corre-
beams changes appreciably, are several millimeters, and tl@onding to maximum gajn Thus, the initial stage of the
intensities of the pump beams required to generate them aeolution of the instability involves the creation of annular
achievable using cw laset8. structures(in the plane perpendicular to the pump bgam
Until recently, theoretical studies of the transverse instawith amplitudes that decay exponentially with time. The dis-
bility concentrated mostly on calculating threshold condi-tribution of intensity along the beam at this stage is arbitrary
tions for the generation of transverse optical structures. Thiand is determined by fluctuations in the medium. This theory
was first done for Kerr medit, followed by threshold cal- is linear in the amplitudes of the weak beams, and therefore
culations for the photorefractive crystals KNp@&nd BaTiQ = cannot describe the subsequent evolution of the instability
equipped with feedback mirrotd,and the crystals LiNbQ  which leads to the formation of regular hexagonal optical
and LiTaQ; illuminated by oppositely directed pump beams structures. These structures arise from nonlinear interactions
but with no feedback mirrof® The crystals KNb@ and  between the weak optical beams. The task of this paper is to
BaTiO; are the best ones to study from an experimental pointlerive a theory of this interaction for photorefractive KNpO
of view. When these crystals are equipped with feedbacland BaTiQ crystals equipped with a feedback mirror. The
mirrors, it is found that stationary hexagonal structures formsmall parameter used in the theory is the amplitude of the
with an instability threshold that is in rather good agreemensideband waves normalized by the square root of the inten-
with theoretical prediction$®1?In Ref. 12, Honda and Ban- sity of the pump beams. Since the instability is aperiodic,
erjee found the threshold by assuming that the instability washree-wave interactions between optical beams whose trans-
aperiodic, i.e., the imaginary part of the instability growth verse wave vectors make angles with each other that are
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multiples of w/3 become important as the instability evolves Since linear instability theory predicts the growth of pertur-
toward its nonlinear stage. It is shown here that this interacbations within the thin ringk|=kg, , in summing in Eq(3)

tion does not stabilize the instability, but rather leads to exit is sufficient to retain only those transverse wave vectors
plosive growth in the amplitudes of the weak sidebandwhose magnitude corresponds to the maximum linear growth
waves, as a result of which hexagonal structures form. Thigate, i.e.,|k|=ko, . Thus, Eq.(3) is essentially a Laudau
can be understood from the following example. Let us asexpansion in the amplitud&, of the growing linear modes
sume that as a result of the evolution of the linear instability(see, e.g., Ref. 14

three weak beams are excited with wave vectaogs Note that the applicability of Eq3), i.e., the possibility
=(ko,k1j), j=1, 2,3, equal real amplitude, and trans-  of limiting the treatment to three- and four-wave processes,
verse wave vectork, j that make angles ofr/3 with each  assumes that the nonlinearity is small. For this to be true in
other. The linear instability theory of Ref. 12 |mpI|es that generaL the matrix elementt is required to be small inde-
three other beams with the transverse wave veetor; will  pendent of how far above threshold the system is. In the
also be excited in the system at the same time, and six beamiseory of phase transitions this corresponds to a first-order
with —ko: q=(—ko, =k 129. The amplitudes of these phase transition that is close to a second-order phase transi-

waves all equah. tion by virtue of the smallness of the order parameter discon-
It will be show below that the evolution ok(t) is de-  tinyjty. In photorefractive crystals, the matrix elemdntis
termined by the following equation: not particularly small; however, the matrix elem@nty .,
) contains a rather large numerical factor which justifies the
ot =~ VAT UAT (1) existence of a range where E8) is applicable whenever the

total contribution of four-wave processes can provide both
wherevo= vy is the instability growth rate at its maximum saturation of the explosive instability and stability of the sta-
point |k, |=ko, andU is the matrix element for the three- tionary hexagonal lattices. In what follows, a range of pa-
wave interaction. SettingA,_o=A, and integrating this rameters will be found in which such saturation and stability

equation gives are actually achieved, and the results of analytic four-wave
Ay theory will be compared with a numerical experiment that
A= 00 (20  takes into account wave processes of higher order. As a re-

(vo+UAg)e "= UAy’ sult, it will be shown that the analytic theory describes the

This expression reveals that there exists a tige-0 at  process of hexagon generation in a qualitatively correct man-
which the amplitudeA goes to infinity when the condition ner, but that the stationary amplitudes it predicts differ by
A,U>0 holds. This is an example of a so-called explosiveroughly a factor of 2 from those obtained by the numerical
instability, for which the solution becomes singular at a finiteexperiment. Thus, higher-order wave processes lead to an
time. Thus, a fundamental feature of this problem is thaimportant renormalization of the hexagon amplitudes. The
three-wave processes lead to correlations between perturbadmerical calculations also show that when a range of pa-
tions whose transverse wave vectdrs make angles with rameters is deliberately chosen for which four-wave theory
one another that are multiples of3. These correlated per- cannot saturate the explosive instability, the hexagons are
turbations generate hexagons in the plane of transverse wasgtabilized at larger amplitudes, i.e., for stronger nonlinearity.
vectorsk, . In this case there is no correlation between dif-  The plan of this paper is as follows: in Sec. 2 nonlinear
ferent hexagons, and the interaction between them is smakquations are derived that describe the evolution of sideband
Four-wave and higher-order wave processes stabilize the ifpeams in photorefractive media with a feedback mirror, and
stability, and also suppress the generation of other hexagomsgeneral boundary value problem is formulated for solving
with smaller amplitudes$i.e., those hexagons which begin to these equations. In Sec. 3 the linear theory of transverse in-
grow after the primary one Thus, hard excitation of hexa- stability is investigated by linearizing this boundary value
gons takes place until amplitudes are reached at which theroblem. As a result, the threshold condition is found for the
excitation is stabilized by nonlinearities of fourth and higherinstability, along with eigenvectors for the direct and
order. This hard excitation of hexagons is the analog of aermitian-conjugate linear boundary value problems. In Sec.
first-order phase transition. 4 expressions are obtained for the matrix elemémnf the

A more general equation, which describes the evolutionthree-wave interaction. The fact that this matrix element will
of weak beamsA, with transverse wave vectd, will be  turn out to be nonzero is of fundamental importance. In Sec.
derived below(here and below the sigh will be omitted, 5 the overall amplitude equatidB) is derived, along with an

taking into account three- and four-wave interactions: expression for the four-wave interaction matrix element
oA 1 T kiykoky: FOT photorefractive crystals like KNkhOand
ra VoAt > Uk ;—k AklAk2 BaTiO;, the matrix elementd andT_kklkzk3 turn out to be
ke purely real. In Sec. 6 an equation is found that describes the
1 time evolution of the hexagon intensity, and the hexagon
31 kKT k=K Tk kgkokgPi Al Ay ©) stability is investigated. This analysis makes it possible to

_ determine the range of parameters in which the four-wave
whereU, T_ kk, are the matrix elements of the three- andinteraction is sufficient to stabilize the growth of the hexa-
four-wave processes evaluated on the surfHde=kg, . gons. In Sec. 7 the generation of hexagons is investigated
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numerically, taking into account higher-order nonlinearities,gratings, whose wave vectors are closett@ngk,. Under

and the theoretical results are compared with experimentahe conditions of the experiment in which the hexagons were

results for the photorefractive crystals KNp@nd BaTiQ. seen, interaction via transmission gratings is negligibly

In the last section, all of these results are summarized. small®1? Therefore, the space-charge fi€l¢r, ,z,t) can be
written in the form

2. FUNDAMENTAL EQUATIONS E(r,,z,t)=exp(2inokoz) Ex,
Assume that a pump light wave, exgdi(ngkogz— wot)]
propagates along theaxis in a photorefractive crystal along X| 1+ E exp(i k'U)Ezko,k)
with an oppositely directed wav8, exd —i(ngkgz— wqt)] K
arising from reflection by a feedback mirror. Heffg(z), +exp(— 2ingkoz) E_
0

Bo(z) are complex wave amplitudes that vary slowly with
ko is the wave vector of the light waves in vacuuwy is
their frequency, andy is the index of refraction of the crys-
tal. For simplicity we will refer to both waves as pump
waves. We denote the distance between the back face of théhereE.- » () are the space-charge field amplitudes arising
crystal and the feedback mirror Hy and the length of the from the pump beams arffl. 5, k(z,t) are the space-charge
crystal along the axis byl, and set the coordinate of the field amplitudes of the sideband beams normalized by the
front face of the crystat=0 (see also the experiment setup pump-beam field amplitudes. These amplitudes are written
in Refs. 8 and 1R Consider perturbations of the pump by the pump and sideband waves, and also by pairs of weak
beams in the form of weak sideband waves, and write thgideband waves. The reality of the quanfgr, ,z,t) leads
total amplitudes of the beams in the form to the following relations between these amplitudes:

F exdi(ngkoz— wot)]=Fq exdi(ngkoz— wgt) ]

X

1+§k: exp(ik‘rL)EZkO,k>, (5)

—E* _E*
E_a=E2kyr  E-akg—k=Eak k-

The wave amplitudeB andB vary with time on a scale
that is the same order as the characteristic relaxation time of
4) the space-charge field, which in photorefractive crystals
can range from tenths of seconds to tens of secthitere-
fore, this dependence can be neglected in the wave
: equationt®!® The equations for the amplitudeés and B,
which are slowly varying irg, take the following form in

X

1+; exp(ik-r, )F(z,t)

B exp{ —i (nokoz_ wot)] = BO eXF{ —i (nokoz_ wot)]

X 1+; explik-r;)By(z,t)

where k= (k, k) is the transverse wave vector in thg light of Eq. (5):

plane,r, is the spatial coordinate in this plane, afgd, By . o3

are amplitudes of the sideband waves normalized by the am- (i_ : ) - Ikonor BE
plitudes of the pump waves. Assume that the polarizations of \dz  2kgng * 2 %o

all the waves are the same, the amplitudes of the sideband

waves are small, i.e|F,|, |By/<1, and thaik|<ngk,, i.e., x| 1+ e”"HEZKO,k),
the sideband waves propagate at small angles to the pump K (6)
bearan? b in the photorefracti dium interact | -4 ongr

e wave beams in the photorefractive medium interac az "t 2kgng A4 |B= 3 2k,

via the following mechanism. Under the action of the light,
current carriers are excited and the crystal acquires a photo-
conductivity. The modulation of the light intensity caused by X
interference of the light beams leads to modulation of the

photoconductivity and the appearance of a space-chargehereA, = d?/dx?+ 32/ dy>.
electric field. Modulation of this space-charge fi@dn turn When the amplitudes of the sideband waves can be ne-
leads to modulation of the dielectric constant of the crystalglected, the following expressions for the pump beams fol-
e=¢€o+ de according to the linear electrooptic effect: low from Egs.(6) and(4):

1_’_; eik~U_E_2k0’k)’

Se=—ngrE, wheren is the index of refraction of the crys- e 3
: . ) 1015 d ikongr
tal andr is the effective electrooptic coefficiettt!® In par- — Fo=— —5— BoEa,
ticular, if the z axis coincides with the crystallographic dz 2 @)
axis, then r=r;3. Note that only the longitudinal e 3
. . d ikonor
z-componentE=E, of the space-charge field is included in gz 805 FoE-2,

the analysis that follows, since the other components give
rise to negligibly small contributions. Thus, the interaction Equations(6), (7) must be supplemented by a relation
between the light beams arises from their diffraction by thebetween the space-charge fiéldand the wave amplitudes.
refractive index modulations they induce in the crytdf As shown above, the photorefractive nonlinearity is ex-
In this paper we will assume that the wave interaction istremely slow; therefore, the generation of the space-charge
mediated only by generation of reflecting refractive indexfield turns out to be affected only by the total intensity of the
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optical beams averaged over the rapid oscillations with frenent E=E, of the space-charge field. The electric current

guencywg, i.e., the standing-wave optical patterns formeddensityj is determined by drift and diffusion of electrons:

by interference between the oppositely directed beams. Let .

u)s/ write the light intensity avera%ped ovgr the rapid temporal J=eunE+eDvn, (13

oscillations in the form where u is the carrier mobilityD = ukgT/e is the diffusion
coefficient, T is the temperature, ankk is the Boltzmann
constant. In the majority of experiments on excitation of

(8) hexagons in photorefractive crystals, conditions are such that

| :|E[|0+ exq2in0koz)|2k0+ eXF(_Zinok()Z)I —2k0]l

where Np, N5, Na, [Np—Na|/>n; furthermore, the characteris-
! tic recombination time LN, for carriers(electron$is con-
_ - 2 ikt * siderably smaller than the characteristic relaxation tige
IO_IE [|F°| 1+; e (Pt = ¢,goNa/4meusls(Np—N,) for the space-charge field.
Therefore, the time derivative in EGLO) can be neglected,
n 2 ei(k1+k2)~riFk F* +|Bo|2 1+2 eikn(Bk andn can be expressed as a function of the light intensity as
K1 Ky o2 3 follows:
+B* )+ >, etk g, B*, )} n= SI(No —Na) (14
Ky ko 2 9oNa
9
FoB% ' From Egs.(11)—(14) we obtain an equation for the space-
I o, = IS 1+; ek (F+B*,) charge field:>1®
JE ~ _
LS dktknE, BY, } Istg - =—1E—Eqd, (15
klvkz 1 2

. B ) . where the tilde instructs us to separate out the spatially os-
herel o =15k,, and Is=[Fo|*+[Bo|* is the sum of the gjjating parts with wave vectors+ 2nogky. Here Eg.
pump beam intensities. =2ingkoD/u is a characteristic photoinduced electric field

Assume that the photorefractive crystal contains a set ofhat depends only on the properties of the crystal,and is
donor and acceptor levels with densitidg andN,, and  caused by diffusion of photoelectrons. If the conductivity of
densities of ionized donors and conduction-band electronghe crystal is predominantly due to holes, we need only
Np andn respectivelyt® The compensating acceptor levels change the coefficients that multiply and E..*°
are completely occupied by electrons and do not participate  Equations(15), (8), (9) imply the following expression
in any transitions, antlp>N, . Let us neglect thermal tran- for the amplitudeE . ., of the reflecting grating created by
sitions of electrons from donor levels into the conductionhe space-charge field generated by the pump beams:
band. Then the acceptor charge N, entirely compensates
the charge due to ionized donors in the dark. Assume that FoB3 .
phototransitions take electrons from donor levels to the con- 2k~ SCT’ E-2,= By (16

duction band with a probabilitgl(Np—Ng), and that elec- ] ) ]
trons are trapped by ionized donors with a probability The theory presented above is entirely suitable for treat-

goNgn, wheres is the photoionization cross section aggl "9 the crystals KNb@ and BaTiQ under investigation in

is the recombination coefficient. Then the density of ionizedNiS paper. This is because diffusion of photoelectrons domi-
donors is given by the equation nates in these crystals, and according to @6) the spatial

modulation of the refractive index is shifted by2 relative
N N N to the modulation of the standing optical pattern, which cor-
5t~ SI(No=Np)—goNpn, (10 responds to the so-called nonlocal photorefractive
responsé®’ Note that inclusion of either an applied exter-
which must be supplemented by the Poisson equation  nal electric field or the photogalvanic effect leaves the form

o of Eq. (15) unchanged, only changing the constamnt.>’
div E=47 — (N5 —Np—n) (11) In particular, the quantitf,. is almost real in the crystals
€ LiNbO3 and LiTaG;; therefore, there is no phase shift, which
and the equation of continuity corresponds to the local response caused by drift of electrons
in an external field or by the photogalvanic effétt> There-
IN5—n) 1 fore, in the interest of greater generality it is assumed below

+ e div j=0, (12) that E is an arbitrary complex constant.

) o ) _ Let us assume that the feedback mirror has unit reflec-
Heree is the static dielectric constant along thexis. Note  tjon coefficient, R=1, and that the reflection of the light

that it is sufficient to take into account only the longitudinal heam from the crystal face is negligibly small. Then we ob-
dielectric constant, since only small-angle perturbatidds  tain from Egs.(7) and (16)

<ngkq are treated in this paper. This in turn implies that it is _ L
sufficient to take into account only the longitudinal compo-  Fo(z)=F,(0)e'7??, By(z)=By(0)e """ %2,

ot
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[Fo(2)|=[Bo(2)|?=Fo(0)|?e™ 7,

17

where y=y, +i yi=k0n8rESC/2 is the coupling constant of
the photorefractive crystal, which can easily be obtained
from experiment by using Eq$17). Then thez-dependence

P. M. Lushnikov

is a diagonal & 6 matrix, and0, 1 are respectively the zero
and unit 2< 2 matrices. The linear operatéf’ has the form

1
Z=—Nidg,~Kkg+ 5

of the characteristic relaxation time for the space-charge field

has the form Y 0 -y 0 -y O
ta(2) =tq4(0)en (19 0 -y 0 v
. * 0 _ 7* 0 ’}’*
Equationg4), (6), (8), (9), and(15—(18), can be used to Y 22)
obtain a closed system of equations for the weak-beam am- 0 -y 0 vy —y 0|’
plitudes. For. subsequent calculations it is convenient to write 1 -1 -1 1 -2 0
this system in matrix form:
-1 1 1 -1 0 -2
JoW =W+ D (W W) where
ki o=k
1 — 03
+ oW, ¥ ¥, ), 19 _ _
k1+k22+k3:k (W, W, W) (19 N=| 1 | ke o
where 0 0
W= (F,F* BB 1 B 0 E o 1) (20) are diagonal &6 matrices, o3 is a Pauli matrix, ky
vk Tle Tk TG e m 2, =k?/2kony, and the timet has been made dimensionless by
is a six-dimensional vector, dividing it by the characteristic relaxation time of the fiéld
0 at the front face of the crystality(0)—t.
The quadratic nonlinearity in Eq19) is written in the
J=ge%* 0 (21)  form of a vectory that depends on the two argumenity,
1 and W :
|
Y
~ 5 Bakg Bk,
,y*
5 E-ak,0,B%k,
,y*
- B2,k Fk,
W W)= y ) , (23)
) Ezko,le—kz
1 * 1 * * 1 * *
~3 Fr,Fle,— > Bik,BXk, T Fi,B i, ~ 5 Eakg kg (Fi, T FEi, + By, + B,kz)
1 * 1 * * 1 * *
- E Fle_kZ_ E Ble—k2+ Ble_kZ_ E_ZkO’kl(Fk2+ F—k2+ Bk2+ B_kZ)

while the cubic nonlinearity vecto® depends on three ar- ditions. In particular, at the back face of the crystal the side-

guments:

o O oo

(W, W, W )= X .
~ 5 Bakg iy (FioF it BB )

1
3 E -2k ky (FiF 2k, + By, B ;)

Equations(19) must be supplemented by boundary con-

. (29

band beam®, acquire an additional phase due to reflection
of the F, beam from the feedback mirror. In order to obtain
this phase shift, let us find the difference in the optical paths
of two parallel rays 1 and 2 incident at an angleon the
back faceAC of the crystal(see Fig. 1L The optical path
differenceA, , will then have the form

Al,2: IAB+ I BC— nol CD+ )\/2,

where

IABZIBC: L/COS 6, ICD:2L tan 6 Sin 0,,
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feedback can be solved in two special cases where the system reduces
c M to a system of ordinary differential equations with constant
coefficients. The first is the case where the coupling constant
v=1, is real (a medium with a local photorefractive re-
sponsg Then|Fq(2)|2=|Bo(2)|2=const. This case was in-
vestigated in Ref. 13 under the additional condition #e
=0, i.e., the instability threshold was found. However, the
coupling constant can be treated approximately as a real
number only in photorefractive crystals like LiNgGnd
FIG. 1. SegmenDA is perpendicular to the direction of propagation of rays LiTaO3, and no one has experimentally observed the forma-
1 and2 within the photorefractive crystal. tion of hexagons in these crystals to date. In the crystals
KNbO; and BaTiQ discussed in this paper, the constant is
) ] unequivocally complex; in fact, we have=ivy; (indicating a
sin 6/sin 6" =no, nonlocal photorefractive respons&® In the second case,
L is the distance between the feedback mirror and the bacthe coupling constany is an arbitrary complex quantity, but
face of the crystal, and is the wavelength of the light in itis assumed that the reflection coefficient from the feedback
vacuum. Subtracting the path difference of the pump beam#ghirror is exactly equal to 1, i.eR=1 (reflection from the
2L+ /2 from the optical path differenc®, ,, we obtain the ~ Crystal faces is neglected as beforand hencelFo(2)|?

required phase shifi (in the small-angle approximatioa ~ =|Bo(2)|?. It is also necessary to assume thgt=0. This
<1): implies that the boundary value problem is solved at the

instability threshold Rey =0, and that this instability is ape-
¢=2L(cos 6—1)ko=—2Kgnol, riodic, so that Imy, =0, i.e., the frequency detuning between
while the boundary conditions for the sideband waves hav@ump beams and sideband beams vanishes. If it were the
the form case that the detuning satisfied p+0, a moving optical
. pattern would be observed in the experiment. However, the
F(0)=FZ(0)=0, experiments of Refs. 8 and 12 showed that the optical pattern

photorefractive D
crystal

B (1)=F(1)exp — 2ikynol), (25) s motionless; therefore, the assumptioni0 appears to
_ be fully justified. The boundary value problem wiR=1,
B (1) =F%(I)exp 2ikgnolL), 1,=0 was solved in Ref. 12. In this case the syst8)

wherel is the length of the crystal along tlzeaxis. Note that takes the form

the signs of the exponents {@5) are reversed compared to
Ref. 12. This discrepancy is obviously due to a typographical
error in Ref. 12, since subsequent expressions in this paper
are correct.

Thus, the problem of describing the evolution of side- (
band waves reduces to a boundary value problem for the

i
_+Ikd) Fk: - Zy (Fk+ Ftk_ Bk_ Bik),

system of equation§&l9) with boundary conditiong25). A
characteristic feature of the photorefractive nonlinearity is d iy* . .

the fact that the right side of Eq19), and consequently the d_z_'kd Bx=- 4 (Fxt+FZ—Bk=BTy),
stationary solutions of the boundary-value probléh®), (27)
(25), are independent of the pump intensity. The pump
intensity determines only the overall normalization of the
optical intensities and the characteristic titgdor setting up
the stationary solutions.

d iy*
d—— d) F* T(Fk-FFtk—Bk—Btk),

, iy
_+|kd)B*k Z(Fk+F K~ Bk_Btk),

1
Eaky k=5 (Fk— F* =By +BYy),
3. LINEAR INSTABILITY THEORY

As a first step, let us study the evolution of sideband
waves in the linear approximation. The systétf) is linear-
ized by discarding the nonline&in W¥,) terms g, O. If we
assume that the time dependenceWf has the formW¥,  Where the space-charge field amplitudes were eliminated

xexp(t), we obtain a linear boundary value problem for thefrom the first four equations by using the last two equations
complex eigenvalues,: of the system. The solution to the syst€2) combined with

o the boundary condition@5) leads to the threshold condition
I = vid Wy (26) for appearance of the instability, which exactly coincides
Solution of this boundary value problem in the general casavith the results of Ref. 12

presents considerable difficulty, because @) is a system
of ordinary differential equationén the coordinatez) with
nonconstant coefficients. The linear boundary value problem

1
~2kg k= 5 (Fm FL =B+ By,

cos(wl)cos( kql) + — sm(wl)co{kd(l +2ngL)]
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1A 1A
20¢ a | b
16{1
151
13
10k FIG. 2. Threshold dependence ¢fl on kgl
for L=0 (a) andngL/I=4.44(b).
10F
5t 7
4F U
O i 1 1 1 i 1 1 L il
0 2 4 0.2 04 0.6 0.8 1.0
kylin klin
Yet+2kg . Yo be plotted. The region of instability lies above the threshold
5y sinwhsin(kgl) — 5= sin(wl) curve y;(kgl). As L changes, the position of the minima
changes; however, the number of minima and their relative
X sinkq(1+2ngL)]=0, (28 spacings remain unchanged, which allows us to label them in

order of increasingyl as 1,2,3,-, etc. In what follows a
positive integerm is used to label each minimum. For
NoL/1<1.43--, the first minimunm=1 is the deepest, while
asL increases the second minimum becomes deepest, then
the third, etc., in succession. Figure 3 shows the
L-dependence ofy™l and k"l corresponding to these
inima. There is only one set of values of the paramkter
or which ™ andk{™l can be found analytically, namely

wherew= \/kd2+ viKg— 'yi2/4. As we have already noted, the
coupling constant satisfies=i y; in the KNbQ; and BaTiQ

crystals to high accuracy, i.e., is pure imaginary. Therefore
in what follows we will sety=ivy;, and then obtain the
threshold functiony;(kyl) from Eq. (28) for each value of
the distance to the feedback mirdor This function consists
of a sequence of minima. Figure 2 shows special cases of t
threshold curvesy;(kyl) for L=0 andngL/I=4.44; in the
second case, the dependenceygdfon kg4l is so steep that . .
only those parts of the threshold curve near the minima could  NoL/I=—3/2+2m, ™l =m, k§"l=m/2, (29

yminy KU
4r

FIG. 3. Dependence o™ (a) andkT™ (b)
on the dimensionless distance to the feedback
mirror ngL/I.
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It is clear from Fig. 3a that at these valued.ofhe minimum  where v, is the maximum instability growth rateky

value y""I=1r is reached as a function &f. It is important —kj"|/kj""<1, andf>0 is a constant. Because the linear
to note that forngL/l= — 3/2+2m the position of themth ~ boundary value problem cannot be solved analytically for
minimum is given with high accuracy by the relation v # 0, the values oby andf remain unknown. However, it
will be clear from what follows that these values themselves
kg(l+2noL)=(2m—1)m (30 are not important for the existence of an explosive three-

(which is an identity when Eq29) holds. The limiting case wave instability. Furthermore, althoughy gives a correction

of this relation for M,L/I>1, m=1 has been seen in [© the hexagon amplitudes, near threshold we haye 0

experiment$. Actually, condition (30) implies that we are anq SO thj; correction is negligib_ly smaI.I. Since the \{alue_ of
choosing that phase shift in Eq25) between sideband Y0 is pos_ltlve above thre;hold, in the Imegr app_rOX|.mat|on
beams propagating in opposite directions alongzthgis for the'amplltudest andB W'!I grow exponenUaI!y with time
which these beams interact most efficiently. In order to un—umII the three-wave ”0”"”‘??‘““( becomes _|mp0rtan'§. For
derstand the physical meaning of E80), let us investigate small values of the “supercriticality’h, the gain of the in-

the dependence of the space-charae field ampliEude, on  Stalility is positive only within a narrow ring|K|
thez czordinate From Ep $27) andg(25) we ﬁn%mo'k =/2k]""konp, SO that when sideband waves are excited in
' a this ring, the magnitudes of their transverse wave vedtdrs

FitB* =exd —ikq(z— ) ][F(l) can be treated as practically constant.
In addition to the threshold conditio(®28), the linear
+exp(2ikgnoL)F* (], boundary value problem Eqg&7) and(25) allows us to find
_ (31) the six-dimensional eigenvector E@0) zﬁff)) of this prob-
F*+Br=exdikq(z—1)] lem at the instability threshold. The zero superscript indi-

cates that all quantities are calculated at the threshold point,

X —2i * . . .
[exp( = 2ikgnol)Fi(l) +FZi (D] and the lower case symbdl, is used in place of the upper-

Then from Eq.(27) it follows that case symboW, to emphasize that the latter is a solution to
o _ the nonlinear boundary value problem, while the former is a
Eoky k=1 SiMKy(I—z+noL) Jlexp( —ikgnoL)Fy(l) solution to its linear portion only.

Let us briefly describe the procedure for findiljéo):
the general solution to the system of four ordinary differen-

Physical considerations suggest that the lowest instabilit al equationg27) can be wntt.en n thg form ofasu.m. of four
independent solutions with arbitrary coefficients

threshold corresponds to the most effective interaction be -
(c1,¢5,C3,¢4). The values of these coefficients are deter-

tween sideband waves mediated by the space-charge field! 4t bound diti 5 which red
E2k, k- According to Eq.(32), the amplitude of this field is mined from boundary condition&5), which reduce to a

) . . . _homogenous system of linear equationsdomhe condition
sinusoidal, and thus on the average the magnitude of the fleGj] 9 y q

litude will b . thin th tal when th at the system be solvable is that its determinant vanish,
amplitude will be a maximum within the crystal when e, ;- jeads to the threshold conditié®8), from which we
peak of the sinusoid is located at the center of the crystal

i : : o find a solutionc of the homogenous system of linear equa-
=112, frqm which we obtalnkd(I/2+ nOL)—(m— %/2)77' ... tions defined up to an arbitrary factor. Therefore, the eigen-
wherem is a whole number, which exactly coincides with

! : . vector 4% is also determined up to an arbitrary factor. In
Eq. (30). Numerical calculations actually confirm that when lp'(( P y

: _ miny _ miny _

noL/l=—3/2+2m holds the maximum of the amplitude particular, fornel/I==3/2+2m, yil=m, kg"l=m/2 we
o . obtain

Eak, coincides to good accuracy with the center of the

crystal, and that for values &€y away from the threshold >

minimum ky=k{"" the maximum of this amplitude moves

+explikqnoL)F* (1)]. (32)

a_lv_vay_from the crystal cente_r. Nevertheless, the physical jus- —j exr{ —j T (E— E Jrexp(E i exy{ W—Z)
tification presented above is somewhat qualitative, because ) 2\ 2 4 2l
in addition to the interaction of sideband beams via the field ) i [z 1 3. mZ
Eax, « there is also a contribution associated with diffraction LeXps M1~ 32 texp - R T
of the sideband beams by the space-charge field of the pump ) i z 1 1 7wz
beamsEy , as is apparent from the linear part of the system ! eXF{E W(T_ 5) +eXP<Z 'W)GXP( j)
Eg. (19). This contribution does not allow such a simple = iz 1 1 w7z
interpretation; however, our success in explaining B6) is —iexg-— 5 W(I > +ex;{ 7 exp( ﬁ)
reason to hope that the overall physical justification is cor- ) alz 1
rect. —i2 co%— (__ _”

Let us now allowy; to exceed threshold somewhat: 0 211 2
<h=(y;—y™/y""<1, where " corresponds to the i co%z (E_ 1”
deepest minimum for a given value bf Near threshold the 2\ 2

instability growth rate can be written in the form 33)

= vo— (kg— kg, For arbitrary values of. the explicit form of this vector
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is very complicated and will not be given here. For each
specific value of the parameteyd™, k"I, L the eigenvec- boundary value problem(19), (25 within the ring |Kk|
tor zp‘ko) was found using the program Mathematica 2.2. = /2kg"kn, in eigenvectorsy , of the linear boundary
In order to find the three- and four-wave interactions it isvalue problem27), (25):
also necessary to solve a linear boundary value problem,
which is the Hermitian conjugate of the linear portion of the
boundary value problem Eg§l9) and (25) with respect to
the scalar product

Let us expand the general soluti®¥, of the nonlinear

\Ifk=; BonAcn(D), A =AF, (38)

where the letten labels the eigenmode of the linear problem
for a given value of the wave vectér

Substituting this expression into the nonlinear system
(19 and taking the scalar product of the latf@s in Eq.
Here repetition of the labelimplies summation from 1 to 6, (34)) with the eigenvectogs of the conjugate linear problem
and ¢4, is an eigenvector of this Hermitian-conjugate prob-leads to the following equation, which is accurate up to qua-
lem that satisfies the system of equations dratic nonlinearities:

I . .
(= [z e 3

ST S=0 (35)

at the instability threshold. The operatef'=(~")* is the
Hermitian conjugate of22), and the following boundary

OAL 1
Tn = Vk,nAk,n+ P E

nqy,ny ki+ko=k

ny.np,n
kl,kzykAkl'”lAkzlnz'

(39

conditions are imposed on the components of the vagfor WhereUEjL‘j I? is the matrix element of the three-wave in-
Bk(0)=B%(0)=0, teraction.

Since for small values of the supercritical parameter O
<h=(y;—y™M/y""<1 sideband waves are excited only in
the narrow ring k|=/2kg""kony corresponding to the mode
with maximum gain and labei=0, while the other modes
obtained by integrating the Hermitian operatiat/dz by have negative gain, to find the matrix element we need only
parts calculate it at the instability threshokl=ki", y=iy™",

! _ 0 _ 0 _ H
The solution of the Hermitian-conjugate boundary value¥in =W, ‘ﬁﬁ,n__'/’ﬁ( : for n=0. Therefore, in what fol-
problem(35), (36) is analogous to the solution of the original lows the Ia}beh. will be omitted. Furthermore, the condition
boundary value problert27), (25), and the threshold condi- Ki1*kz=k implies that only vectors that make anglesm8
tion for the Hermitian-conjugate problem coincides with theWith each other will part|<_:|pate in the three-wave interaction.
threshold condition28) for the direct problem. The eigen- As a result, we obtain from Eq19)
vector for the conjugate problem takes the following form

Bi(l)=

B (1) = —F%(I)exp 2ikqnel),

—Fi(l)exp — 2ikgnel), (36)

i i (¢l mo)
whenngL/l = —3/2+2m, y™ =, ki"l=m/2: U =U=2——+-" (40)
' ek (W)
cmlz 1 4
exg -l 5 |(r—5||texpg | - 5 whereJ and #» are defined in Eq921) and (23). The zero
2\ 2 4 2| . o .
;1 . label in 7, indicates that its arguments are evaluated at the
exp[i T (__ +exp(_i T W_) instability threshold, 7o= m(£” , #£?), and Eq.(39) re-
2\l 2 4 2 duces to Eq(3).

For each specific set of values of the paramei;é‘i‘@l,

camfz 1
exp{l 2 (I__ 2 k™M, L the matrix element) was found using the program

'{_ 3 772)
+exp i —— 5

0
vil=

4 2|
mlz 1
ex _IE I——E +exp —

) m(z 1
”TeXIETE

37 Tz
)

o513
]

4. THREE-WAVE INTERACTION OF SIDEBAND WAVES

|

Mathematica 2.2. In the first step, the eigenvectgfS
#£©) were calculated for the direct and conjugate linear
problems, and then the value of was obtained by integra-
tion in Eq. (40). For the special casagL/l=—3/2+2m,
Y™ =, ki"l==/2 an analytic expression for the matrix
element follows from Eqs(33) and (37):

U 2v2 1+2e™ AT
" 5 coshw/2) (41)

Figure 4 shows how the matrix elemdntfor the three-wave

The investigation of three- and four-wave interactionsinteraction at the instability threshold depends on the dis-
given here will follow several ideas taken from Refs. 18 andtancelL between the back face of the crystal and the feedback
19, in which the generation of hexagonal cells was discusseuhirror (for the first minimumm=1 of the threshold curve
at the surface of a liquid dielectric in an external electric fieldy""(L)), calculated from Eqg40) and(23), where the func-
(Refs. 18 and under conditions of weakly supercritical con- tions y""(L) andkj""(L) are given in Fig. 3. In this case, it

vection (Refs. 19.

was assumed that the coupling constaig pure imaginary,
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- 2— 2 due to interaction of the fundamental spatial harmonics
that arise from the cubic nonlinearities in the fifth and sixth
equations of the systeif19).
Thus, the general solutiod of the nonlinear bound-
ary value problen(19), (25) can be cast in the form

W=Wy+ oWy, (42)
4
whereW, is an expansion of38) in fundamental harmonics
and
2 Nk: AklAkzé‘I’k

Ky T Ro=k

is an expansion in combination harmonics. The vectars
andk, lie at the instability threshol¢k,|=|k,| =k, .
0 . . . . . Substituting Egs(42) and(43) into the nonlinear system
0 2 4 L (19) and taking the scalar product of this system according to
(34) with the vectorys; of the conjugate linear proble(27)
FIG. 4. Dependence of the three-wave interaction matrix elerbermn leads to the following equation, which is accurate to within

NoL/1. cubic nonlinearities:
dA U
which is trug for KNb@ and BaTiQ to_ high accuracy. The 0_tk: el 2 k1+%:k AklAk?_kl+k2+k3:k
investgaiing the explosive imatabity. X D W) Wi )
(1O Y BN V1IN
5. FOUR-WAVE INTERACTION OF SIDEBAND WAVES X Ak A Ar, 43)

The explosive three-wave instability can be saturated by
nonlinearities of fourth and higher orders. Those light beamdvhereJ, » are defined in Eqs(21) and(23), and the sum-
whose wave vectors lie in the narrow ring near the instabilitymation runs over fundamental harmonics. Thus, we obtain
threshold|k| = /—Zk&nlnkOnOEkO_L will be referred to as “fun- EQ- (). The matrix element (_)f_ the four—wave.mtejractlon
damental” spatial harmonics. The quadratic nonlinearities,’ —kkjk,k, IS found by symmetrizing the expression in curly
represented by the vectoy in the fundamental system of brackets in Eq(43). The matrix elemenT _yy \ x, depends
equations(19) and written out in Eq(23), give rise to all  only on the angles between the vectlrk,, k,, ks; there-
possible sum and difference harmonics arising from thefore we will denote this matrix element b, , where ¢ is
three-wave interactiok=k;+k, |kyJd=ko, . the angle between the vectdes andk,.

Equations for the harmonids=k; + ks, |k; J=ko, fol- In the special case where only six fundamental harmon-
low from Egs.(19) and(25), whereky=k?/2kon,. The sum-  ics are excited with wave vectobs , k», ks, k4, ks, Kg,
mation in the quadratic nonlinearities runs over fundamentaforming a hexagortFig. 5), we obtain three types of combi-
harmonics at the instability thresholgh=y{”), and time nation harmonics: zero-ordetk|=0, second-order|k]|
derivatives and cubic nonlinearities are neglected because2k,, , and “root-three”-order k| =v3kgy, . These combi-
the corrections they produce are of higher or(f#th order  nation harmonics are generated by the interaction of pairs of
and higher. Thus, when the amplitudes of the fundamentalfundamental harmonics at angles0, and/3, respectively.
harmonics are specified the boundary-value problem fomn Fig. 5 the second order harmonics are indicated by dotted
combination harmonics reduces to the solution of a lineatines, and thev3 harmonics are indicated by dashed lines.
system of ordinary differential equations with constant coef-The zero-order harmonic renormalizes the pump beams,
ficients and an inhomogeneous part determined by the anwhile the second-order and harmonics form the vertices
plitudes of the fundamental harmonics. The boundary condiand centers of the faces of secondary hexagons, respectively.
tions for this system are, as before, given by E@@5). This is clear both from Fig. 5 and the experime(sse, e.g.,
Solution of this system presents no fundamental difficultiesfig. 2 in Ref. 8. The interaction via second-order harmonics
however, explicit expressions for the combination harmonicgontributes to the matrix elemefiy, while interaction via
are not given here because they are extremely involved. It ig3 harmonics contributes 6 ,5; interaction via zero-order
important to note that these harmonics are second order imarmonics contributes to bofhy and T,;3. The process 2
the amplitudes of the sideband waves, and therefore they-2 also contributes to bothy and T 5.
contribute to the four-wave processes via the interaction with  Let us denote the amplitudes of the six fundamental har-
the fundamental harmonics. Furthermore, the four-wave inmonicsky, ks, K3, K4, K5, kg by A1, Az, Az, A4, As, Ag.
teraction contains a contribution from the intrinsic processAccording to Eq.(38), only three amplitudes are indepen-
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FIG. 5. The six vectors denoted by solid lines represent the fundamental
harmonics. The ends of these vectors form the fundamental hexagon. The b : ! ) L

dotted lines denote the second-order harmonics, while the dashed lines are 0 0.2 04 n L/l
v3 harmonics. The second-order harmonics form the vertices of secondary
hexagons, while the€3 harmonics are at the centers of their faces. FIG. 6. Dependence of the matrix elemefits T 5 for four-wave interac-

tions onngL/l; the solid curve isTy, the dashed curvé ;.

dent: AAIAI, A5: ;, A6: §1 becausd(4:_kl, k5

=—k,, kg=—ks. Then Eq,(3) can be rewritten in the form . . .
20 76 3 a3 instability. For equal and real amplitudes;=A;=As

dA; To =ReA;, we obtain(1) as a special case, whose correspond-
W:V°A1+UA§A§_[7 AL+ Tl Agl® ing solution (2) goes to infinity at finite time. In general,
solutions to the systen¥4) (without cubic nonlinearities
+ |A5|2)}A1, can be expressed in terms of elliptic functions, and for arbi-
trary initial conditions(except for a set of measure zgro
IA T these solutions also exhibit singularities at finite times. It can
e At UA’l‘A’g—[—O | A2+ T (| Ay be shown that in this limit the relative deviationfA(|?
at 2 — A1 A% (|AL12—|A5)2) /A% go to zero, the total
phased = Arg A;+Arg A3+ Arg As goes torn, wheren is
+|A5|2)}A3, (44  an integer, and each of the phases individually goes to a
certain constant. Therefore, at later stages of evolution the
IAs x| To 5 ) system(44) reduces to the following equation for the inten-
= VoRs T UATA; — | o [Ag|*+ Toa(| A sity 12=|A,2=|A 2= |Ag)%:
+|A3IZ)}A5- ;Z_L:”O' +UI3’2—(%+2T,T,3) 12, (45)
Thus, the original boundary value probleth9), (25)
reduces to a system of three amplitude equations. whose solution can be directly compared with experiment for
The Mathematica 2.2 program was used to find the masmall supercritical parameters whep— 0.
trix elementsT,, T, 5 for each specific value of the param- ~ Thus, the formation of hexagons admits the following

etersy™, KT, L, just as in the previous section where the Physical picture. Due to fluctuations in the medium at time
three-wave interaction was discussed. Figure 6 shows thie=0, the amplitudeA; is found to be nonzero for a certain
dependence of these matrix elements on the distanbe-  value of wave vectok lying in the ring [k|=/2kg" " "kgno.
tween the back face of the crystal and the feedback mirrof he linear instability leads to an increase |#y| until the
(for the first minimumm=1 of the threshold curve/™"(L)), nonlinear terms in Eq44) become important, as a result of
calculated according to Eq$23) and (43), where y""(L), ~ Which the amplitudes\;, A3, As all begin to grow explo-
kT"(L) are given in Fig. 3. Just as faf, all of these matrix ~ sively at the same time, i.e., sideband waves are found to be
elements are found to be purely real quantities. excited with wave vectorky, kz, K3, ks, Ks, ks forming a
hexagon(see Fig. 5 The explosive growth of these ampli-
tudes due to the three-wave interaction will continue until the
four-wave nonlinearity comes into play. If in this case it
In the previous section, the problem of describing theturns out that the system parametef8"l, ki"l, noL/l are
evolution of hexagons was reduced to solution of the systersuch that the total matrix elemeiiy/2+ 2T ;3 is positive,
(44) of three ordinary differential equations. When cubic then the four-wave nonlinearity can stabilize the instability;
nonlinearities are neglected, this system leads to an explosivaherwise, the growth in intensity of the sideband waves con-

6. HEXAGON FORMATION DYNAMICS AND STABILITY
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tinues and stabilization is achieved only via nonlinearities of
higher order. In what follows, we will discuss the stability of
stationary hexagonal solutions.

In experiment it has been well establish&that initially
two sideband waves are actually excited, with opposite signs
of the transverse wave vectors. This exactly corresponds to
the initial growth of amplitude\, for the ¢y, eigenmode Eq.
(38), since this mode consists of sideband waves with trans-
verse wave vectorsk (20). Then a rapid growth of hexa-
gons is observed, and the intensities of all sideband waves
are comparablBIn Ref. 8 the time dependence of the inten-
sities of the sideband waves was measured. It is clear from
Fig. 3 of Ref. 8 that after a short initial stage of exponential
growth, the intensity follows a power-law increase that is
characteristic of explosive nonlinearity, after which it is sta-
bilized by higher-order nonlinearities. Evidence of this stabi-
lization is the formation of secondary hexagons with low L — —
intensity(see Fig. 2 in Ref. Bgenerated by second-order and
v3 harmonics.

The stationary(hexagon solution to Eq.(44) has the FIG. 7. Intensityl of the fundamental hexagon at the front face of the

0 0.04 0.08 0.12
nDL/l

form photorefractive crystat=0 as a function ofyL/I, which follows from the
theory of four-wave interactions in the region where this theory is appli-
A U cable. The intensity of the hexagon is normalized by the intensity of the
0—4-|—7T/3+-|—0 pump at the front face of the crystal.

P
: (46)

i 21/0 ( U
+ \/ +
sign Y 4Tzt To 4Tt To included in order to definitely ensure saturation of the explo-
WhereA0:A1:A2:A3. This solution is characterized by a sive InStablllty, the fO”OWing integral of the boundal’y value
“hard” excitation regime, with an amplitude discontinuity at Problem(19), (25) was used:
threshold(for »4=0) given by

A 2V H=2 ([F?~[B?) +[F+Ff—B—B{]| =0,
O:—' k —
AT o+ T k=0
/3 0 (48)
The procedure for investigating the internal stability of
the stationary solutiort46) was analogous to that used in where the summation runs over all harmonics. The vanishing

Ref. 19. This solution is stable when of this integral for allz at all timest physically expresses
1 U2 To4T conservation of the energy of the optical field, since the dis-
—— vo<4 o' 73 5 U2, 47) sipation of optical energy, which is small in a photorefractive
2 To+4T 3 (2T 73— To) crystal, has nowhere been taken into account in deriving the

This result, when evaluated near the instability thresholcystem(19), (25). In particular, az=0 (i.e., at the front face
where vy—0, implies thatT,+ T ,3>0. Figure 7 shows the Of the crystal the conditionH=0 implies that the optical
dependence of the hexagon intengityA3 on noL/l in that ~ power of the pump beam incident on the crystal equals the
range of the parametdr where the stability conditiori47) total optical power of the beams that exit the crystal by its
holds. Outside this range, explosive growth of the hexagonBack face(recall that we have neglected reflection from the
can be stabilized 0n|y by higher-order wave processes. boundary and have set the reflection coefficient of the feed-
back mirror equal to unity According to the boundary con-
dition (25), we haveF,|,—,=0 for all k; therefore it follows
from Eq. (48) that when sideband waves form the pump is
A numerical experiment was performed in order todepleted, which is expressed in the growth of the zero-order
verify the results of the analytic theory for hexagon generaharmonics Fy|—o, Bylk—o Which renormalize the pump
tion described above. The goal of this experiment was tdeams. Thus, in the strongly nonlinear theory we must at a
investigate the region of large values mfL/1=0.1, where minimum take into account all processes in which zero har-
saturation of the explosive instability is provided by higher-monics interact with each other. It is not difficult to see that
order wave processéfive-wave and higher In the experi- such processes give contributions up to eighth order in the
ment the boundary value probleth9), (25 was solved nu- equation for the fundamental harmonic. Therefore, in the nu-
merically, taking into account a larger number of sum andmerical experiment all processes up to eight-wave inclu-
difference harmonics than in the previous section. In order tsively were taken into account. In this case, it is necessary to
estimate the number of higher-order harmonics required, anihclude along with the harmonics 0, 1,3 listed above the
accordingly the order of the wave processes that must bearmonicsy7, 3, V12, 13, 4 as well.(The ends of the

7. NUMERICAL EXPERIMENT
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Lig the amplitudes of the higher-order harmonics rapidly decay
! as their labels increase, if we assume by definition that all the
higher-order combination harmonics equal zero but take into
0.06r account all possible processes between the 0, ¥3 Qar-
monics, the amplitude of the fundamental harmonic changes
by more than 2%. Thus, for the strongly nonlinear theory it
actually turns out to be sufficient to take into account wave
0.04k- processes up to eighth order, while including in those pro-
cesses only interactions with the participation of harmonics
0, 1, 2,v3. Note also that only harmonics 0, 1, &3 are
observed in experiment, while the higher harmonics are too
weak to be recordecsee, e.g., Refs. 6 and.8n these ex-

0.020 periments the intensity of hexagons is observed to be from

I one to three percent of the intensity of the pump, which is

i » - somewhat lower than the results obtained from the numerical
I experiment, which gives a valufB,(0)|>=0.04. This is

Y Y Y I"oL m probably explained by the fact that losses due to reflection at

the crystal facegof order 15% for light incident on the back
FIG. 8. Dependence of the intensity of the fundamental hexdg@olid ~ face of the crystal and just as much again when the light
curve and intensity of the/3 harmonic(l,5 is dashefion noL/I obtained  reenters the crystal after reflection from the feedback mjirror
from the _nurr_]erical experiment. The normalization of the intensity is thehave not been included in the syst(ah@), (25), and losses in
same as in Fig. 7. . . .

the reflection of light from the feedback mirror have also

been neglected.

We mention in conclusion that far,L/I =0.85 station-
wave vectors of harmonics 3/12, 4 form the vertices of ary hexagon solutions turn out to be unstable against re-
hexagons, while the ends of the wave vectors of harmonicpumping of energy back into th& harmonic. This instabil-
J7, /13 form regular dodecagons ity is connected with the fact already noted in Sec. 3 that for

At each timet the boundary value problerf19), (25) noL/I=1.43 the depths of the first and second minima of the
was solved by Newton’s method. At each step of thisthreshold curvey™"(k4) for the linear instability are compa-
method, values of the amplitudgy|,_ , were specified at the rable (see Fig. 3a In this case the rati&]"|;-o/K]"|m=1 iS
front face of the crystal for all the harmonics. Then the am-close to 3(accurate to 2% Thus, in the neighborhood of
plitudesF,|,—, By|,=| at the back face of the crystal were nyL/I~1.43 the amplitudes of the first-order avi¥l harmon-
found by integrating the first four ordinary differential equa- ics are the same order, and hence they are coupled by the
tions of the systenfl9) using the fourth-order Runge-Kutta three-wave interaction. This case requires the inclusion of all
method in the coordinate. The error used in Newton's wave processes up to eight-wave in the numerical calcula-
method was given by the accuracy with which the boundarytions, and thus the treatment of a larger number of harmonics
condition (25) was satisfied at the back face of the crystal.than were included in the numerical experiment described
The time dependence was determined by integrating thebove. Consideration of this problem lies outside the frame-
space charge field amplitudd‘sﬂkoyk using a predictor- work of this paper.
corrector methodthe fifth and sixth equations of the system
(19)). . . . 8. CONCLUSION

The results of the numerical experiment are shown in
Fig. 8 in the form of plots of the intensities of the fundamen-  Thus, the following results have been obtained in this
tal harmonic andv3 harmonic versus the distance to the paper. A system of equationd9) has been derived with
feedback mirror for 8ngL/I<0.85. In the region O boundary condition$25) that describes the evolution of the
<nyL/I=0.1, the intensity of the fundamental harmonic hassideband wave amplitudes and space-charge field for an ar-
a minimum, which is in agreement with the results of thebitrary level of nonlinearity. Linearization of this system
analytic theory according to which fourth-order processedeads to the threshold conditiof28) for appearance of a
can saturate the explosive growth of the hexagon instabilityransverse instability, which exactly coincides with the re-
only in this region. However, in this case the analytiBd'  sults of Ref. 12. It has been shown that the threshold curve
and numericaBy"™ values of the light-beam amplitudes dif- y;(k4l) consists of a sequence of minima whose relative
fer rather strongly:By""/|Bg"|,-o~2, which indicates a depth changes with the parametgjL/l, which is propor-
strong renormalization of the amplitudes of the hexagons dugonal to the distancé to the feedback mirror. FongL/I
to higher-order wave processes. Thus, the predictions of the 1.43 the deepest minimufne., corresponding to the low-
four-wave theory are valid more qualitatively than quantita-est instability thresholdturns out to be the first, and as the
tively. For ngL/1=0.1, when the four-wave interactions quantityngL/l increases the second, third, etc., minima be-
surely cannot ensure saturation of the explosive instabilitycome the deepest in succession. Expres$gd) was ob-
the nonlinearity increases with increasing_/I. tained, which describes with high accuracy the position of all

Additional numerical investigations showed that, sincethe minima. In this case the magnitudes of the transverse
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wave vectors belong to the set ¢3, \/5,... for thefirst,  harmonic and/3 harmonic are of the same order due to the
second, third, etc. minima. Moreover, a set of explicit solu-closeness of their linear instability thresholds. In this case the
tions (29) has been found for the threshold E88) which  transverse wave vectors of these two harmonics correspond
correspond to the deepest values of the minima for all posto positions of two successive minima of the threshold curve
sible values of the parametagL/I. Eigenvectors were cal- vy;(kq4l), which leads to an intense exchange of energy be-
culated for the direct linear boundary value probl¢2s), tween them.
(26) and its Hermitian conjugatés6), (35) at the instability )
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